To process live data from NSE using python we need two libraries nsepy and nsetools. We can extract all the details like Last Traded price, Total Traded Quantity, Delivery Quantity, Upper Price Band and all other values on real time basis for a particular stock from NSE. In the below example we have shown an example to fetch last traded price and close price.
In the next program we will use this data to evaluate technical indicator values.
import os
os.system('pip install nsepy')
os.system('pip install nsetools')
import pandas as pd
from nsepy.live import get_holidays_list
from datetime import date, timedelta
from nsetools import Nse
import nsepy as NSE
nse = Nse()
all_stock_codes = nse.get_stock_codes()
symbols = all_stock_codes.keys()
series = "EQ"
for data_symbol in symbols:
tradingSymbol = data_symbol
series = "EQ"
quote = NSE.live.get_quote(symbol=tradingSymbol)
stock_data = quote["data"]
#print(pd.DataFrame(quote["data"]).T)
if(len(stock_data) == 0):
continue
Close_Price = stock_data[0]["closePrice"]
Last_Price = stock_data[0]["lastPrice"]
print('symbol: {}, LastPrice: {}, ClosePrice: {}'.format(tradingSymbol, Last_Price, Close_Price))
Source Code can be downloaded from GitHub
No comments:
Post a Comment